Sign up for PayPal and start accepting credit card payments instantly.

Friday, August 1, 2008

internet provider di indonesia

Biasanya, ISP menerapkan biaya bulanan kepada pelanggan. Hubungan ini biasanya dibagi menjadi dua kategori: modem ("dial-up") dan jalur lebar. Hubungan dial-up sekarang ini banyak ditawarkan secara gratis atau dengan harga murah dan membutuhkan penggunaan kabel telepon biasa. Hubungan jalur lebar dapat berupa ISDN, non-kabel, kabel modem, DSL, Internet satelit. Broadband dibanding modem memiliki kecepatan yang jauh lebih cepat dan selalu "on", namun lebih mahal.

ISP di Indonesia

* 3GNet → Situs web
* AudiaNet → Situs web
* BENINGNET → Situs web
* BiGnet → Situs web
* BITNET → Situs web
* BIZNET → Situs web
* BUMINET → Situs web
* CABINET → Situs web
* CBN → Situs web
* CENTRIN → Situs web
* Central Online (CLINE) → Situs web
* Channel-11.Net → Situs web
* CROSS NETWORK INDONESIA → Situs web
* CYBERNET → Situs web
* DigiNet → Situs web
* DNET → Situs web
* ELGANET → Situs web
* ERESHA.NET.ID → Situs web
* GIGA.NET.ID → Situs web
* GLOBALPORT → Situs web
* IPTK - EZ.Net → Situs web
* IDOLA → Situs web
* IndikaNet → Situs web
* INDONET → Situs web
* INDOSAT → Situs web
* JAPnet → Situs web
* JASATEL → Situs web
* LINKNET → Situs web
* MEGANET → Situs web
* MELSA → Situs web
* MITRANET → Situs web
* MNETwireless → Situs web
* ORION / Orion Cyber Internet → Situs web
* Pes@tNet → Situs web
* PACIFICNET → Situs web
* QUASAR → Situs web
* RADNET → Situs web
* RAJASA → Situs web
* Sistelindo → Situs web
* Speedy → Situs web
* TELKOMNET → Situs web
* UBNET → Situs web
* UIINET → Situs web
* UNINET → Situs web
* VIPNET → Situs web
* VISIONNET → Situs web
* WASANTARA → Situs web
* LINTASWAVE → Situs web
* SMARTLINK GLOBAL MEDIA → Situs web
* FIRSTMEDIA → Situs web
* TELEMEDIA NUSANTARA → Situs web
* TABINA NETWORK → Situs Web
* KOETARADJA NET → Situs Web

sumber: wikipedia

hystory of the internet

Prior to the widespread inter-networking that led to the Internet, most communication networks were limited by their nature to only allow communications between the stations on the network, and the prevalent computer networking method was based on the central mainframe method. In the 1960s, computer researchers, Levi C. Finch and Robert W. Taylor pioneered calls for a joined-up global network to address interoperability problems. Concurrently, several research programs began to research principles of networking between separate physical networks, and this led to the development of Packet switching. These included Donald Davies (NPL), Paul BaranRAND Corporation), and Leonard Kleinrock's MIT and UCLA research programs.

This led to the development of several packet switched networking solutions in the late 1960s and 1970s, including ARPANET, and X.25. Additionally, public access and hobbyist networking systems grew in popularity, including UUCP. They were however still disjointed separate networks, served only by limited gateways between networks. This led to the application of packet switching to develop a protocol for inter-networking, where multiple different networks could be joined together into a super-framework of networks. By defining a simple common network system, the Internet protocol suite, the concept of the network could be separated from its physical implementation. This spread of inter-network began to form into the idea of a global inter-network that would be called 'The Internet', and this began to quickly spread as existing networks were converted to become compatible with this. This spread quickly across the advanced telecommunication networks of the western world, and then began to penetrate into the rest of the world as it became the de-facto international standard and global network. However, the disparity of growth led to a digital divide that is still a concern today.

Following commercialisation and introduction of privately run Internet Service Providers in the 1980s, and its expansion into popular use in the 1990s, the Internet has had a drastic impact on culture and commerce. This includes the rise of near instant communication by e-mail, text based discussion forums, the World Wide Web. Investor speculation in new markets provided by these innovations would also lead to the inflation and collapse of the Dot-com bubble, a major market collapse. But despite this, Internet continues to grow.


Creation

The USSR's launch of Sputnik spurred the United States to create the Advanced Research Projects Agency, known as ARPA, in February 1958 to regain a technological lead.[1][2] ARPA created the Information Processing Technology Office (IPTO) to further the research of the Semi Automatic Ground Environment (SAGE) program, which had networked country-wide radar systems together for the first time. J. C. R. Licklider was selected to head the IPTO, and saw universal networking as a potential unifying human revolution.

Licklider moved from the Psycho-Acoustic Laboratory at Harvard University to MIT in 1950, after becoming interested in information technology. At MIT, he served on a committee that established Lincoln Laboratory and worked on the SAGE project. In 1957 he became a Vice President at BBN, where he bought the first production PDP-1 computer and conducted the first public demonstration of time-sharing.

At the IPTO, Licklider recruited Lawrence Roberts to head a project to implement a network, and Roberts based the technology on the work of Paul Baran,[citation needed] who had written an exhaustive study for the U.S. Air Force that recommended packet switching (as opposed to circuit switching) to make a network highly robust and survivable. After much work, the first two nodes of what would become the ARPANET were interconnected between UCLA and SRI International in Menlo Park, California, on October 29, 1969. The ARPANET was one of the "eve" networks of today's Internet. Following on from the demonstration that packet switching worked on the ARPANET, the British Post Office, Telenet, DATAPAC and TRANSPAC collaborated to create the first international packet-switched network service. In the UK, this was referred to as the International Packet Stream Service (IPSS), in 1978. The collection of X.25-based networks grew from Europe and the US to cover Canada, Hong Kong and Australia by 1981. The X.25 packet switching standard was developed in the CCITT (now called ITU-T) around 1976. X.25 was independent of the TCP/IP protocols that arose from the experimental work of DARPA on the ARPANET, Packet Radio Net and Packet Satellite Net during the same time period. Vinton Cerf and Robert Kahn developed the first description of the TCP protocols during 1973 and published a paper on the subject in May 1974. Use of the term "Internet" to describe a single global TCP/IP network originated in December 1974 with the publication of RFC 675, the first full specification of TCP that was written by Vinton Cerf, Yogen Dalal and Carl Sunshine, then at Stanford University. During the next nine years, work proceeded to refine the protocols and to implement them on a wide range of operating systems.

The first TCP/IP-wide area network was made operational by January 1, 1983 when all hosts on the ARPANET were switched over from the older NCP protocols to TCP/IP. In 1985, the United States' National Science Foundation (NSF) commissioned the construction of a university 56 kilobit/second network backbone using computers called "fuzzballs" by their inventor, David L. Mills. The following year, NSF sponsored the development of a higher-speed 1.5 megabit/second backbone that became the NSFNet. A key decision to use the DARPA TCP/IP protocols was made by Dennis Jennings, then in charge of the Supercomputer program at NSF.

The opening of the network to commercial interests began in 1988. The US Federal Networking Council approved the interconnection of the NSFNET to the commercial MCI Mail system in that year and the link was made in the summer of 1989. Other commercial electronic e-mail services were soon connected, including OnTyme, Telemail and Compuserve. In that same year, three commercial Internet service providers (ISP) were created: UUNET, PSINET and CERFNET. Important, separate networks that offered gateways into, then later merged with, the Internet include Usenet and BITNET. Various other commercial and educational networks, such as Telenet, Tymnet, Compuserve and JANET were interconnected with the growing Internet. Telenet (later called Sprintnet) was a large privately funded national computer network with free dial-up access in cities throughout the U.S. that had been in operation since the 1970s. This network was eventually interconnected with the others in the 1980s as the TCP/IP protocol became increasingly popular. The ability of TCP/IP to work over virtually any pre-existing communication networks allowed for a great ease of growth, although the rapid growth of the Internet was due primarily to the availability of commercial routers from companies such as Cisco Systems, Proteon and Juniper, the availability of commercial Ethernet equipment for local-area networking and the widespread implementation of TCP/IP on the UNIX operating system.